Amphiphilic Graft Copolymers as Templates for the Generation of Binary Metal Oxide Mesoporous Interfacial Layers for Solid-State Photovoltaic Cells

Autor: Seung Man Lim, Hayeon Jeong, Juyoung Moon, Jung Tae Park
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Nanomaterials, Vol 14, Iss 4, p 352 (2024)
Druh dokumentu: article
ISSN: 14040352
2079-4991
DOI: 10.3390/nano14040352
Popis: The binary metal oxide mesoporous interfacial layers (bi-MO meso IF layer) templated by a graft copolymer are synthesized between a fluorine-doped tin oxide (FTO) substrate and nanocrystalline TiO2 (nc-TiO2). Amphiphilic graft copolymers, Poly(epichlorohydrin)-graft-poly(styrene), PECH-g-PS, were used as a structure-directing agent, and the fabricated bi-MO meso IF layer exhibits good interconnectivity and high porosity. Even if the amount of ZnO in bi-MO meso IF layer increased, it was confirmed that the morphology and porosity of the bi-MO meso IF layer were well-maintained. In addtion, the bi-MO meso IF layer coated onto FTO substrates shows higher transmittance compared with a pristine FTO substrate and dense-TiO2/FTO, due to the reduced surface roughness of FTO. The overall conversion efficiency (η) of solid-state photovoltaic cells, dye-sensitized solar cells (DSSCs) fabricated with nc-TiO2 layer/bi-MO meso IF layer TZ1 used as a photoanode, reaches 5.0% at 100 mW cm−2, which is higher than that of DSSCs with an nc-TiO2 layer/dense-TiO2 layer (4.2%), resulting from enhanced light harvesting, good interconnectivity, and reduced interfacial resistance. The cell efficiency of the device did not change after 15 days, indicating that the bi-MO meso IF layer with solid-state electrolyte has improved electrode/electrolyte interface and electrochemical stability. Additionally, commercial scattering layer/nc-TiO2 layer/bi-MO meso IF layer TZ1 photoanode-fabricated solid-state photovoltaic cells (DSSCs) achieved an overall conversion efficiency (η) of 6.4% at 100 mW cm−2.
Databáze: Directory of Open Access Journals