Trigonometric approximation of functions f ( x , y ) $f(x,y)$ of generalized Lipschitz class by double Hausdorff matrix summability method

Autor: Abhishek Mishra, Vishnu Narayan Mishra, M. Mursaleen
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-10 (2020)
Druh dokumentu: article
ISSN: 1687-1847
DOI: 10.1186/s13662-020-03124-8
Popis: Abstract In this paper, we establish a new estimate for the degree of approximation of functions f ( x , y ) $f(x,y)$ belonging to the generalized Lipschitz class L i p ( ( ξ 1 , ξ 2 ) ; r ) $Lip ((\xi _{1}, \xi _{2} );r )$ , r ≥ 1 $r \geq 1$ , by double Hausdorff matrix summability means of double Fourier series. We also deduce the degree of approximation of functions from L i p ( ( α , β ) ; r ) $Lip ((\alpha ,\beta );r )$ and L i p ( α , β ) $Lip(\alpha ,\beta )$ in the form of corollary. We establish some auxiliary results on trigonometric approximation for almost Euler means and ( C , γ , δ ) $(C, \gamma , \delta )$ means.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje