On the regulator problem for linear systems over rings and algebras

Autor: Hermida-Alonso José Ángel, Carriegos Miguel V., Sáez-Schwedt Andrés, Sánchez-Giralda Tomás
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Open Mathematics, Vol 19, Iss 1, Pp 101-110 (2021)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2021-0002
Popis: The regulator problem is solvable for a linear dynamical system Σ\Sigma if and only if Σ\Sigma is both pole assignable and state estimable. In this case, Σ\Sigma is a canonical system (i.e., reachable and observable). When the ring RR is a field or a Noetherian total ring of fractions the converse is true. Commutative rings which have the property that the regulator problem is solvable for every canonical system (RP-rings) are characterized as the class of rings where every observable system is state estimable (SE-rings), and this class is shown to be equal to the class of rings where every reachable system is pole-assignable (PA-rings) and the dual of a canonical system is also canonical (DP-rings).
Databáze: Directory of Open Access Journals