Version [1.0]- [SAMbA-RaP is music to scientists’ ears: Adding provenance support to spark-based scientific workflows]

Autor: Thaylon Guedes, Marta Mattoso, Marcos Bedo, Daniel de Oliveira
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: SoftwareX, Vol 28, Iss , Pp 101927- (2024)
Druh dokumentu: article
ISSN: 2352-7110
DOI: 10.1016/j.softx.2024.101927
Popis: While researchers benefit from Apache Spark for executing scientific workflows at scale, they often lack provenance support due to the framework’s design limitations. This paper presents SAMbA-RaP, a provenance extension for Apache Spark. It focuses on: (i) Executing external, black-box applications with intensive I/O operations within the workflow while leveraging Spark’s in-memory data structures, (ii) Extracting domain-specific data from in-memory data structures and (iii) Implementing data versioning and capturing the provenance graph in a workflow execution. SAMbA-RaP also provides real-time reports via a web interface, enabling scientists to explore dataflow transformations and content evolution as they run workflows.
Databáze: Directory of Open Access Journals