Mobilisation thresholds for coral rubble and consequences for windows of reef recovery

Autor: T. M. Kenyon, D. Harris, T. Baldock, D. Callaghan, C. Doropoulos, G. Webb, S. P. Newman, P. J. Mumby
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Biogeosciences, Vol 20, Pp 4339-4357 (2023)
Druh dokumentu: article
ISSN: 1726-4170
1726-4189
DOI: 10.5194/bg-20-4339-2023
Popis: The proportional cover of rubble on reefs is predicted to increase as disturbances increase in intensity and frequency. Unstable rubble can kill coral recruits and impair binding processes that transform rubble into a stable substrate for coral recruitment. A clearer understanding of the mechanisms of inhibited coral recovery on rubble requires characterisation of the hydrodynamic conditions that trigger rubble mobilisation. Here, we investigated rubble mobilisation under regular wave conditions in a wave flume and irregular wave conditions in situ on a coral reef in the Maldives. We examined how changes in near-bed wave orbital velocity influenced the likelihood of rubble motion (e.g. rocking) and transport (by walking, sliding or flipping). Rubble mobilisation was considered as a function of rubble length, branchiness (branched vs. unbranched) and underlying substrate (rubble vs. sand). The effect of near-bed wave orbital velocity on rubble mobilisation was comparable between flume and reef observations. As near-bed wave orbital velocity increased, rubble was more likely to rock, be transported and travel greater distances. Averaged across length, branchiness and substrate, loose rubble had a 50 % chance of transport when near-bed wave orbital velocities reached 0.30 m s−1 in both the wave flume and on the reef. However, small and/or unbranched rubble pieces were generally mobilised more and at lower velocities than larger, branched rubble. Rubble also travelled further distances per day (∼2 cm) on substrates composed of sand than rubble. Importantly, if rubble was interlocked, it was very unlikely to move (< 7 % chance) even at the highest velocity tested (0.4 m s−1). Furthermore, the probability of rubble transport declined over 3 d deployments in the field, suggesting rubble had snagged or settled into more hydrodynamically stable positions within the first days of deployment. We expect that snagged or settled rubble is transported more commonly in locations with higher-energy events and more variable wave environments. At our field site in the Maldives, we expect recovery windows for binding (when rubble is stable) to predominantly occur during the calmer north-eastern monsoon when wave energy impacting the atoll is less and wave heights are smaller. Our results show that rubble beds comprised of small rubble pieces and/or pieces with fewer branches are more likely to have shorter windows of recovery (stability) between mobilisation events, and thus be good candidates for rubble stabilisation interventions to enhance coral recruitment and binding.
Databáze: Directory of Open Access Journals