Autor: |
J. Wang, L. Davidovich, G. S. Agarwal |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 2, Iss 3, p 033389 (2020) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.2.033389 |
Popis: |
We determine quantum precision limits for estimation of damping constants and temperature of lossy bosonic channels. A direct application would be the use of light for estimation of the absorption and the temperature of a transparent slab. Analytic lower bounds are obtained for the uncertainty in the estimation, through a purification procedure that replaces the master equation description by a unitary evolution involving the system and ad hoc environments. For zero temperature, Fock states are shown to lead to the minimal uncertainty in the estimation of damping, with boson-counting being the best measurement procedure. In both damping and temperature estimates, sequential prethermalization measurements, through a stream of single bosons, may lead to huge gain in precision. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|