A numerical scheme for the ground state of rotating spin-1 Bose–Einstein condensates

Autor: Sirilak Sriburadet, Yin-Tzer Shih, B.-W. Jeng, C.-H. Hsueh, C.-S. Chien
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Scientific Reports, Vol 11, Iss 1, Pp 1-20 (2021)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-021-02249-4
Popis: Abstract We study the existence of nontrivial solution branches of three-coupled Gross–Pitaevskii equations (CGPEs), which are used as the mathematical model for rotating spin-1 Bose–Einstein condensates (BEC). The Lyapunov–Schmidt reduction is exploited to test the branching of nontrivial solution curves from the trivial one in some neighborhoods of bifurcation points. A multilevel continuation method is proposed for computing the ground state solution of rotating spin-1 BEC. By properly choosing the constraint conditions associated with the components of the parameter variable, the proposed algorithm can effectively compute the ground states of spin-1 $$^{87}Rb$$ 87 R b and $$^{23}Na$$ 23 N a under rapid rotation. Extensive numerical results demonstrate the efficiency of the proposed algorithm. In particular, the affect of the magnetization on the CGPEs is investigated.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje