Autor: |
Shuang Zhang, Songwen Gu, Yucong Zhou, Lei Shi, Huilong Jin |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 32, Iss 7, Pp 4753-4771 (2024) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2024217?viewType=HTML |
Popis: |
The integration of unmanned aerial vehicle (UAV) networks with intelligent reflecting surface (IRS) technology offers a promising solution to enhance wireless communication by dynamically altering signal propagation. This study addresses the challenge of maximizing system energy efficiency (EE) in IRS-assisted UAV networks. The primary objective is to optimize power allocation and IRS reflection design to achieve this goal. To tackle the optimization problem, we employ a block coordinate descent (BCD) method, decomposing it into three subproblems: phase shift optimization, power allocation, and trajectory planning. These subproblems are iteratively solved using an improved particle swarm optimization (PSO) algorithm. Simulation results demonstrate that the proposed PSO algorithm effectively plans high-quality UAV trajectories in complex environments, significantly enhancing EE. The findings suggest that the IRS-assisted UAV model outperforms traditional UAV models, offering substantial improvements in wireless communication quality and EE. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|