Some Results on Iterative Proximal Convergence and Chebyshev Center
Autor: | Laishram Shanjit, Yumnam Rohen, Sumit Chandok, M. Bina Devi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Function Spaces, Vol 2021 (2021) |
Druh dokumentu: | article |
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2021/8863325 |
Popis: | In this paper, we prove a sufficient condition that every nonempty closed convex bounded pair M,N in a reflexive Banach space B satisfying Opial’s condition has proximal normal structure. We analyze the relatively nonexpansive self-mapping T on M∪N satisfying TM⊆M and TN⊆N, to show that Ishikawa’s and Halpern’s iteration converges to the best proximity point. Also, we prove that under relatively isometry self-mapping T on M∪N satisfying TN⊆N and TM⊆M, Ishikawa’s iteration converges to the best proximity point in the collection of all Chebyshev centers of N relative to M. Some illustrative examples are provided to support our results. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |