Autor: |
Sung Wan Kang, Ji-young Lee, Ok-Ju Kang, Yong-Man Kim, Eun Kyung Choi, Shin-Wha Lee |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-60501-z |
Popis: |
Abstract Although immunotherapy has not yet been as successful in ovarian cancer (OC), it remains a potential therapeutic strategy. Preclinical models of OC are necessary to evaluate the efficacy of immuno-oncology (IO) drugs targeting human immune components but have been underutilized. Developing mouse models with a humanized (Hu) immune system can help understand the human immune response to IO drugs which have demonstrated limited effectiveness in OC patients. We established OC xenograft Hu-mouse models by intraperitoneally injecting luciferase-expressing SKOV-3 Luc and OVCAR-3 Luc OC cells into CD34+ Hu-mice. Tumor growth was monitored through bioluminescence imaging (BLI). In the SKOV-3 Luc Hu-mouse model, we assessed the efficacy of PD-1 blockade with pembrolizumab. We observed the presence of human lymphocyte and myeloid cell subsets within the tumors, lymph nodes, blood, and spleens in these models. Notably, these tumors exhibited a high prevalence of tumor-infiltrating macrophages. Furthermore, we identified HDAC class I target genes, and genes associated with epithelial-mesenchymal transition (EMT) and fibroblasts in the tumors of Hu-mice treated with pembrolizumab. Our xenograft Hu-mouse model of OC provides a valuable tool for investigating the efficacy of IO drugs. The insights gained from this model offer useful information to explore potential mechanisms associated with unresponsive anti-PD-1 treatment in OC. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|