Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition

Autor: Liu Jingjing, Pucci Patrizia
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 349-381 (2023)
Druh dokumentu: article
ISSN: 2191-950X
DOI: 10.1515/anona-2022-0292
Popis: The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{A}}. More precisely, A{\bf{A}} has behaviors like ∣ξ∣q(x)−2ξ{| \xi | }^{q\left(x)-2}\xi if ∣ξ∣| \xi | is small and like ∣ξ∣p(x)−2ξ{| \xi | }^{p\left(x)-2}\xi if ∣ξ∣| \xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f(x,u)f\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition.
Databáze: Directory of Open Access Journals