Autor: |
Liu Jingjing, Pucci Patrizia |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 349-381 (2023) |
Druh dokumentu: |
article |
ISSN: |
2191-950X |
DOI: |
10.1515/anona-2022-0292 |
Popis: |
The article deals with the existence of a pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasilinear equation in RN{{\mathbb{R}}}^{N}, which involves a double-phase general variable exponent elliptic operator A{\bf{A}}. More precisely, A{\bf{A}} has behaviors like ∣ξ∣q(x)−2ξ{| \xi | }^{q\left(x)-2}\xi if ∣ξ∣| \xi | is small and like ∣ξ∣p(x)−2ξ{| \xi | }^{p\left(x)-2}\xi if ∣ξ∣| \xi | is large. Existence is proved by the Cerami condition instead of the classical Palais-Smale condition, so that the nonlinear term f(x,u)f\left(x,u) does not necessarily have to satisfy the Ambrosetti-Rabinowitz condition. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|