Training deep learning based dynamic MR image reconstruction using open-source natural videos

Autor: Olivier Jaubert, Michele Pascale, Javier Montalt-Tordera, Julius Akesson, Ruta Virsinskaite, Daniel Knight, Simon Arridge, Jennifer Steeden, Vivek Muthurangu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-62294-7
Popis: Abstract To develop and assess a deep learning (DL) pipeline to learn dynamic MR image reconstruction from publicly available natural videos (Inter4K). Learning was performed for a range of DL architectures (VarNet, 3D UNet, FastDVDNet) and corresponding sampling patterns (Cartesian, radial, spiral) either from true multi-coil cardiac MR data (N = 692) or from synthetic MR data simulated from Inter4K natural videos (N = 588). Real-time undersampled dynamic MR images were reconstructed using DL networks trained with cardiac data and natural videos, and compressed sensing (CS). Differences were assessed in simulations (N = 104 datasets) in terms of MSE, PSNR, and SSIM and prospectively for cardiac cine (short axis, four chambers, N = 20) and speech cine (N = 10) data in terms of subjective image quality ranking, SNR and Edge sharpness. Friedman Chi Square tests with post-hoc Nemenyi analysis were performed to assess statistical significance. In simulated data, DL networks trained with cardiac data outperformed DL networks trained with natural videos, both of which outperformed CS (p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje