Autor: |
Jacob Townsend, Cassie Putman Micucci, John H. Hymel, Vasileios Maroulas, Konstantinos D. Vogiatzis |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-020-17035-5 |
Popis: |
The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|