Representation of molecular structures with persistent homology for machine learning applications in chemistry

Autor: Jacob Townsend, Cassie Putman Micucci, John H. Hymel, Vasileios Maroulas, Konstantinos D. Vogiatzis
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-020-17035-5
Popis: The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level.
Databáze: Directory of Open Access Journals