Autor: |
Vicky Caponigro, Anna L. Tornesello, Fabrizio Merciai, Danila La Gioia, Emanuela Salviati, Manuela G. Basilicata, Simona Musella, Francesco Izzo, Angelo S. Megna, Luigi Buonaguro, Eduardo Sommella, Franco M. Buonaguro, Maria L. Tornesello, Pietro Campiglia |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of Translational Medicine, Vol 21, Iss 1, Pp 1-15 (2023) |
Druh dokumentu: |
article |
ISSN: |
1479-5876 |
DOI: |
10.1186/s12967-023-04801-4 |
Popis: |
Abstract Background Early diagnosis of hepatocellular carcinoma (HCC) is essential towards the improvement of prognosis and patient survival. Circulating markers such as α-fetoprotein (AFP) and micro-RNAs represent useful tools but still have limitations. Identifying new markers can be fundamental to improve both diagnosis and prognosis. In this approach, we harness the potential of metabolomics and lipidomics to uncover potential signatures of HCC. Methods A combined untargeted metabolomics and lipidomics plasma profiling of 102 HCV-positive patients was performed by HILIC and RP-UHPLC coupled to Mass Spectrometry. Biochemical parameters of liver function (AST, ALT, GGT) and liver cancer biomarkers (AFP, CA19.9 e CEA) were evaluated by standard assays. Results HCC was characterized by an elevation of short and long-chain acylcarnitines, asymmetric dimethylarginine, methylguanine, isoleucylproline and a global reduction of lysophosphatidylcholines. A supervised PLS-DA model showed that the predictive accuracy for HCC class of metabolomics and lipidomics was superior to AFP for the test set (100.00% and 94.40% vs 55.00%). Additionally, the model was applied to HCC patients with AFP values |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|