A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy

Autor: Ya-Su Lyu, Pei-liang Shi, Xiao-Ling Chen, Yue-Xiao Tang, Yan-Fang Wang, Rong-Rong Liu, Xiao-Rui Luan, Yu Fang, Ru-Huan Mei, Zhen-Fang Du, Hai-Ping Ke, Erik Matro, Ling-En Li, Zhao-Yu Lin, Jing Zhao, Xiang Gao, Xian-Ning Zhang
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Molecular Therapy: Nucleic Acids, Vol 5, Iss C (2016)
Druh dokumentu: article
ISSN: 2162-2531
DOI: 10.1038/mtna.2016.17
Popis: Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion–deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9+/mut and Krt9mut/mut mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9+/mut) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9+/mut mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.
Databáze: Directory of Open Access Journals