Fractional Calculus for Non-Discrete Signed Measures
Autor: | Vassili N. Kolokoltsov, Elina L. Shishkina |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Mathematics, Vol 12, Iss 18, p 2804 (2024) |
Druh dokumentu: | article |
ISSN: | 2227-7390 03618404 |
DOI: | 10.3390/math12182804 |
Popis: | In this paper, we suggest a first-ever construction of fractional integral and differential operators based on signed measures including a vector-valued case. The study focuses on constructing the fractional power of the Riemann–Stieltjes integral with a signed measure, using semigroup theory. The main result is a theorem that provides the exact form of a semigroup for the Riemann–Stieltjes integral with a measure having a countable number of extrema. This article provides examples of semigroups based on integral operators with signed measures and discusses the fractional powers of differential operators with partial derivatives. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |