Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
Autor: | Jungki Lee, Mingu Han |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
volume integral equation method (VIEM)
isotropic/anisotropic inclusion problems boundary element method (BEM) standard finite element method (FEM) Technology Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
Zdroj: | Materials, Vol 14, Iss 22, p 6996 (2021) |
Druh dokumentu: | article |
ISSN: | 1996-1944 18702538 |
DOI: | 10.3390/ma14226996 |
Popis: | In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |