CHOOSING THE MODEL OF BIOLOGICAL NEURAL NETWORK FOR IMAGE SEGMENTATION OF A BIO-LIQUID FACIE

Autor: M. E. Semenov, T.Yu. Zablotskaya
Jazyk: English<br />Russian
Rok vydání: 2019
Předmět:
Zdroj: Vestnik KRAUNC: Fiziko-Matematičeskie Nauki, Vol 26, Iss 1, Pp 78-93 (2019)
Druh dokumentu: article
ISSN: 2079-6641
2079-665X
43329470
DOI: 10.26117/2079-6641-2019-26-1-78-93
Popis: In the paper, the biological neural network models are analyzed with a purpose to solve the problems of segmentation and pattern recognition when applied to the bio-liquid facies obtained by the cuneiform dehydration method. The peculiarities of the facies’ patterns and the key steps of their digital processing are specified in the frame of the pattern recognition. Feasibility of neural network techniques for the different image data level digital processing is reviewed as well as for image segmentation. The real-life biological neural network architecture concept is described using the mechanisms of the electrical input-output membrane voltage and both induced and endogenic (spontaneous) activities of the neural clusters when spiking. The mechanism of spike initiation is described for metabotropic and ionotropic receptive clusters with the nature of environmental exciting impact specified. Also, the mathematical models of biological neural networks that comprise ot only functional nonlinearities but the hysteretic ones are analyzed and the reasons are given for preference of the mathematical model with delay differential equations is chosen providing its applicability for modeling a single neuron and neural network as well.
Databáze: Directory of Open Access Journals