Autor: |
Saber Kouas, Salem Djedidi, Imen Ben Slimene Debez, Imed Sbissi, Nouf M. Alyami, Ann M. Hirsch |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 10, Iss 19, Pp e38653- (2024) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2024.e38653 |
Popis: |
Forty-seven (47) bacterial strains were isolated from soil of Gabes (an arid region in southern Tunisia) and were screened for their ability to produce Indole-3-Acetic Acid (IAA) and to solubilize phosphate (P). The characterization and molecular identification of the most successful P-solubilizing bacteria (PSB) were then carried out. When grown on suitable artificial media, the most salt-tolerant strains also showed the highest P solubilization capacity (up to 126.8 μg ml−1 of released phosphorus after 7 day incubation) and the strongest ability to produce IAA (up to 101.86 μg ml−1 after 3 day incubation). Overall, bacterial isolates displayed a different tolerance to varying pH, temperatures, and salinity. The molecular identification revealed that 11 strains belonged to three genera: Bacillus, Pseudomonas and Mesorhizobium. Inoculation of barley with P-solubilizing bacteria under tricalcium phosphate-induced P shortage significantly improved plant growth (biomass, shoot height, and root length) together with increasing total chlorophyll contents and photosynthetic activity. This was concomitant with (i) higher P uptake and translocation and (ii) increased phosphorus absorption and utilization efficiencies (PAE and PUE), which is indicative of a better plant P nutrition under P scarcity. Taken together, we provide strong arguments showing that bacteria native to extreme environments display PSB potential making them promising candidates to mitigate low Pi availability for crop plants. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|