Popis: |
Solid-state batteries (SSBs) have emerged as a promising alternative to conventional lithium-ion batteries, with notable advantages in safety, energy density, and longevity, yet the environmental implications of their life cycle, from manufacturing to disposal, remain a critical concern. This review examines the environmental impacts associated with the production, use, and end-of-life management of SSBs, starting with the extraction and processing of raw materials, and highlights significant natural resource consumption, energy use, and emissions. A comparative analysis with traditional battery manufacturing underscores the environmental hazards of novel materials specific to SSBs. The review also assesses the operational environmental impact of SSBs by evaluating their energy efficiency and carbon footprint in comparison to conventional batteries, followed by an exploration of end-of-life challenges, including disposal risks, regulatory frameworks, and the shortcomings of existing waste management practices. A significant focus is placed on recycling and reuse strategies, reviewing current methodologies like mechanical, pyrometallurgical, and hydrometallurgical processes, along with emerging technologies that aim to overcome recycling barriers, while also analyzing the economic and technological challenges of these processes. Additionally, real-world case studies are presented, serving as benchmarks for best practices and highlighting lessons learned in the field. In conclusion, the paper identifies research gaps and future directions for reducing the environmental footprint of SSBs, underscoring the need for interdisciplinary collaboration to advance sustainable SSB technologies and contribute to balancing technological advancements with environmental stewardship, thereby supporting the transition to a more sustainable energy future. |