Research on Model Selection-Based Weighted Averaged One-Dependence Estimators

Autor: Chengzhen Zhang, Shenglei Chen, Huihang Ke
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 15, p 2306 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12152306
Popis: The Averaged One-Dependence Estimators (AODE) is a popular and effective method of Bayesian classification. In AODE, selecting the optimal sub-model based on a cross-validated risk minimization strategy can further enhance classification performance. However, existing cross-validation risk minimization strategies do not consider the differences in attributes in classification decisions. Consequently, this paper introduces an algorithm for Model Selection-based Weighted AODE (SWAODE). To express the differences in attributes in classification decisions, the ODE corresponding to attributes are weighted, with mutual information commonly used in the field of machine learning adopted as weights. Then, these weighted sub-models are evaluated and selected using leave-one-out cross-validation (LOOCV) to determine the best model. The new method can improve the accuracy and robustness of the model and better adapt to different data features, thereby enhancing the performance of the classification algorithm. Experimental results indicate that the algorithm merges the benefits of weighting with model selection, markedly enhancing the classification efficiency of the AODE algorithm.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje