A Deep Reinforcement Learning Algorithm for Smart Control of Hysteresis Phenomena in a Mode-Locked Fiber Laser

Autor: Alexey Kokhanovskiy, Alexey Shevelev, Kirill Serebrennikov, Evgeny Kuprikov, Sergey Turitsyn
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Photonics, Vol 9, Iss 12, p 921 (2022)
Druh dokumentu: article
ISSN: 2304-6732
DOI: 10.3390/photonics9120921
Popis: We experimentally demonstrate the application of a double deep Q-learning network algorithm (DDQN) for design of a self-starting fiber mode-locked laser. In contrast to the static optimization of a system design, the DDQN reinforcement algorithm is capable of learning the strategy of dynamic adjustment of the cavity parameters. Here, we apply the DDQN algorithm for stable soliton generation in a fiber laser cavity exploiting a nonlinear polarization evolution mechanism. The algorithm learns the hysteresis phenomena that manifest themselves as different pumping-power thresholds for mode-locked regimes for diverse trajectories of adjusting optical pumping.
Databáze: Directory of Open Access Journals