Micro-object pose estimation with sim-to-real transfer learning using small dataset

Autor: Dandan Zhang, Antoine Barbot, Florent Seichepine, Frank P.-W. Lo, Wenjia Bai, Guang-Zhong Yang, Benny Lo
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Communications Physics, Vol 5, Iss 1, Pp 1-11 (2022)
Druh dokumentu: article
ISSN: 2399-3650
DOI: 10.1038/s42005-022-00844-z
Popis: High-resolution scanning tunnelling microscopy is a state-of-the-art imaging technique at the nanometer scale. This work presents a novel deep learning approach for 3D pose estimation of micro/nano-objects, particularly useful in regimes of limited experimental data.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje