The Degree-Diameter Problem for Outerplanar Graphs

Autor: Dankelmann Peter, Jonck Elizabeth, Vetrík Tomáš
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Discussiones Mathematicae Graph Theory, Vol 37, Iss 3, Pp 823-834 (2017)
Druh dokumentu: article
ISSN: 2083-5892
DOI: 10.7151/dmgt.1969
Popis: For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that nΔ,D=ΔD2+O (ΔD2−1)$n_{\Delta ,D} = \Delta ^{{D \over 2}} + O\left( {\Delta ^{{D \over 2} - 1} } \right)$ is even, and nΔ,D=3ΔD−12+O (ΔD−12−1)$n_{\Delta ,D} = 3\Delta ^{{{D - 1} \over 2}} + O\left( {\Delta ^{{{D - 1} \over 2} - 1} } \right)$ if D is odd. We then extend our result to maximal outerplanar graphs by showing that the maximum number of vertices in a maximal outerplanar graph of maximum degree Δ and diameter D asymptotically equals nΔ,D.
Databáze: Directory of Open Access Journals