On the nonlinear system of fourth-order beam equations with integral boundary conditions
Autor: | Ammar Khanfer, Lazhar Bougoffa |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | AIMS Mathematics, Vol 6, Iss 10, Pp 11467-11481 (2021) |
Druh dokumentu: | article |
ISSN: | 2473-6988 |
DOI: | 10.3934/math.2021664?viewType=HTML |
Popis: | The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters $ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f(x, u, v, u'', v''), \ 0 0, \mu > 0 $ are two parameters and $ f, g: [0, 1]\times[0, \infty)\times[0, \infty)\times(-\infty, 0)\times(-\infty, 0) \rightarrow \mathbb{R} $ are two continuous functions satisfy the growth conditions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |