On the nonlinear system of fourth-order beam equations with integral boundary conditions

Autor: Ammar Khanfer, Lazhar Bougoffa
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: AIMS Mathematics, Vol 6, Iss 10, Pp 11467-11481 (2021)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2021664?viewType=HTML
Popis: The purpose of this paper is to establish an existence theorem for a system of nonlinear fourth-order differential equations with two parameters $ \begin{eqnarray*} \left\{ \begin{array}{rcl} u^{(4)}+A(x)u& = &\lambda f(x, u, v, u'', v''), \ 0 0, \mu > 0 $ are two parameters and $ f, g: [0, 1]\times[0, \infty)\times[0, \infty)\times(-\infty, 0)\times(-\infty, 0) \rightarrow \mathbb{R} $ are two continuous functions satisfy the growth conditions.
Databáze: Directory of Open Access Journals