On approximation of mappings with values in the space of continuous functions

Autor: H. A. Voloshyn, V. K. Maslyuchenko, O. N. Nesterenko
Jazyk: English<br />Ukrainian
Rok vydání: 2013
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 23-27 (2013)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
DOI: 10.15330/cmp.4.1.23-27
Popis: Using a theorem on the approximation of the identity in the Banach space $C_u(Y)$ of all continuous functions $g:Y\rightarrow \mathbb{R}$, defined on a metrizable compact $Y$ with the uniform norm, we prove that for a topological space $X$, a metrizable compact $Y$, a linear subspace $L$ of $Y$ dense in $C_u(Y)$ and a separately continuous function $f: X\times Y\rightarrow \mathbb{R}$ there exists a sequence of jointly continuous functions $f_n: X\times Y\rightarrow \mathbb{R}$ such that $f_n^x = f(x, \cdot)\in L$ and $f_n^x \rightarrow f^x$ in $C_u(Y)$ for each $x\in X$.
Databáze: Directory of Open Access Journals