W2,p a priori estimates for nonvariational operators: the sharp maximal function technique
Autor: | Marco Bramanti |
---|---|
Jazyk: | English<br />Italian |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Bruno Pini Mathematical Analysis Seminar, Vol 9, Iss 1, Pp 1-19 (2018) |
Druh dokumentu: | article |
ISSN: | 2240-2829 |
DOI: | 10.6092/issn.2240-2829/8939 |
Popis: | We consider a nonvariational degenerate elliptic operator, structured on a system of left invariant, 1-homogeneous, Hörmander vector fields on a Carnot group, where the coefficient matrix is symmetric, uniformly positive on a bounded domain and the coefficients are locally VMO. We discuss a new proof (given in [BT] and also based on results in [BF]) of the interior estimates in Sobolev spaces, first proved in [BB-To]. The present proof extends to this context Krylov' technique, introduced in [K1], consisting in estimating the sharp maximal function of second order derivatives. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |
načítá se...