Developing a logistic regression model to predict spontaneous preterm birth from maternal socio-demographic and obstetric history at initial pregnancy registration

Autor: Brenda F. Narice, Mariam Labib, Mengxiao Wang, Victoria Byrne, Joanna Shepherd, Z. Q. Lang, Dilly OC Anumba
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BMC Pregnancy and Childbirth, Vol 24, Iss 1, Pp 1-10 (2024)
Druh dokumentu: article
ISSN: 1471-2393
DOI: 10.1186/s12884-024-06892-3
Popis: Abstract Background Current predictive machine learning techniques for spontaneous preterm birth heavily rely on a history of previous preterm birth and/or costly techniques such as fetal fibronectin and ultrasound measurement of cervical length to the disadvantage of those considered at low risk and/or those who have no access to more expensive screening tools. Aims and objectives We aimed to develop a predictive model for spontaneous preterm delivery
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje