Reversed S-Shaped Bifurcation Curve for a Neumann Problem
Autor: | Hui Xing, Hongbin Chen, Ruofei Yao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Discrete Dynamics in Nature and Society, Vol 2018 (2018) |
Druh dokumentu: | article |
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2018/5376075 |
Popis: | We study the bifurcation and the exact multiplicity of solutions for a class of Neumann boundary value problem with indefinite weight. We prove that all the solutions obtained form a smooth reversed S-shaped curve by topological degree theory, Crandall-Rabinowitz bifurcation theorem, and the uniform antimaximum principle in terms of eigenvalues. Moreover, we obtain that the equation has exactly either one, two, or three solutions depending on the real parameter. The stability is obtained by the eigenvalue comparison principle. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |