Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses.

Autor: Christopher J Skalnik, Sean Y Cheah, Mica Y Yang, Mattheus B Wolff, Ryan K Spangler, Lee Talman, Jerry H Morrison, Shayn M Peirce, Eran Agmon, Markus W Covert
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: PLoS Computational Biology, Vol 19, Iss 6, p e1011232 (2023)
Druh dokumentu: article
ISSN: 1553-734X
1553-7358
DOI: 10.1371/journal.pcbi.1011232
Popis: Antibiotic resistance poses mounting risks to human health, as current antibiotics are losing efficacy against increasingly resistant pathogenic bacteria. Of particular concern is the emergence of multidrug-resistant strains, which has been rapid among Gram-negative bacteria such as Escherichia coli. A large body of work has established that antibiotic resistance mechanisms depend on phenotypic heterogeneity, which may be mediated by stochastic expression of antibiotic resistance genes. The link between such molecular-level expression and the population levels that result is complex and multi-scale. Therefore, to better understand antibiotic resistance, what is needed are new mechanistic models that reflect single-cell phenotypic dynamics together with population-level heterogeneity, as an integrated whole. In this work, we sought to bridge single-cell and population-scale modeling by building upon our previous experience in "whole-cell" modeling, an approach which integrates mathematical and mechanistic descriptions of biological processes to recapitulate the experimentally observed behaviors of entire cells. To extend whole-cell modeling to the "whole-colony" scale, we embedded multiple instances of a whole-cell E. coli model within a model of a dynamic spatial environment, allowing us to run large, parallelized simulations on the cloud that contained all the molecular detail of the previous whole-cell model and many interactive effects of a colony growing in a shared environment. The resulting simulations were used to explore the response of E. coli to two antibiotics with different mechanisms of action, tetracycline and ampicillin, enabling us to identify sub-generationally-expressed genes, such as the beta-lactamase ampC, which contributed greatly to dramatic cellular differences in steady-state periplasmic ampicillin and was a significant factor in determining cell survival.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje