Autor: |
Brian D. Vasquez Campos, Jorge P. Zubelli |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 14, Iss 10, p 2202 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym14102202 |
Popis: |
We prove a general result on presentations of finitely generated algebras and apply it to obtain nice presentations for some noncommutative algebras arising in the matrix bispectral problem. By “nice presentation”, we mean a presentation that has as few as possible defining relations. This, in turn, has potential applications in computer algebra implementations and examples. Our results can be divided into three parts. In the first two, we consider bispectral algebras with the eigenvalue in the physical equation to be scalar-valued for 2×2 and 3×3 matrix-valued eigenfunctions. In the third part, we assume the eigenvalue in the physical equation to be matrix-valued and draw an important connection with Spin Calogero–Moser systems. In all cases, we show that these algebras are finitely presented. As a byproduct, we answer positively a conjecture of F. A. Grünbaum about these algebras. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|