Neutron resonance cross sections evaluation based on the phase shift deep neural network

Autor: Hu Zehua
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: EPJ Web of Conferences, Vol 302, p 07002 (2024)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202430207002
Popis: Neutron resonance cross sections are essential in many nuclear science and application fields. Evaluated nuclear libraries usually derive neutron resonance parameters using R-matrix theory. However, determining these parameters and reconstructing the pointwise cross sections required for transport calculations is a time-consuming process. This paper presents a new method for fitting neutron resonance cross sections by using a phase shift deep neural network (PhaseDNN). The network presents resonance cross sections based on its network parameters. This approach allows for the quick calculation of cross section values from the given network parameters. Additionally, PhaseDNN can fit network parameters to experimental data to obtain a smooth resonance cross section curve. Therefore, it has the potential to be an alternative to R-matrix theory.
Databáze: Directory of Open Access Journals