Infinitely many solutions for fractional Schr\'odinger equations in R^N
Autor: | Caisheng Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Electronic Journal of Differential Equations, Vol 2016, Iss 88,, Pp 1-15 (2016) |
Druh dokumentu: | article |
ISSN: | 1072-6691 |
Popis: | Using variational methods we prove the existence of infinitely many solutions to the fractional Schrodinger equation $$ (-\Delta)^su+V(x)u=f(x,u), \quad x\in\mathbb{R}^N, $$ where $N\ge 2, s\in (0,1)$. $(-\Delta)^s$ stands for the fractional Laplacian. The potential function satisfies $V(x)\geq V_0>0$. The nonlinearity f(x,u) is superlinear, has subcritical growth in u, and may or may not satisfy the (AR) condition. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |