ПІДВИЩЕННЯ ТОЧНОСТІ КОРОТКОСТРОКОВИХ ПРОГНОЗІВ ГЕНЕРАЦІЇ СЕС НА ОСНОВІ ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ ТА ВРАХУВАННЯ ДОДАТКОВИХ ФАКТОРІВ
Autor: | В.О. Мирошник, С.С. Лоскутов |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Технічна електродинаміка, Iss 1, Pp 061-061 (2024) |
Druh dokumentu: | article |
ISSN: | 1607-7970 2218-1903 |
DOI: | 10.15407/techned2024.01.061 |
Popis: | Статтю присвячено розвитку моделей прогнозування відпуску електроенергії промисловими сонячними електростанціями на основі штучних нейронних мереж та використання числового прогнозу погоди. Актуальність дослідження обумовлена необхідністю зменшення витрат, пов'язаних з небалансами виробників з відновлюваних джерел енергії (ВДЕ), які іноді сягають 50% відпущеної електроенергії, а також зростанням небалансів таких виробників в ОЕС України. Загальні небаланси виробників з ВДЕ сьогодні зумовлені падінням на 45% виробництва зеленої електроенергії, зокрема і внаслідок того, що у південних і південно-східних регіонах бойові дії пошкодили або знищили 75% вітрових електростанцій і 15 % сонячних станцій. Підвищення точності та стабільності прогнозування відпуску електроенергії такими виробниками можуть значно скоротити витрати на небаланси. Розроблено різні методи агрегації для 15-хвилинних значень вироблення зеленої енергії, щоб підвищити точність прогнозування для 1, 2 та 24-годинних інтервалів. Досліджено потенційні переваги використання значень числового прогнозу погоди (NWP) задля підвищення точності прогнозу. Проаналізовано вплив зовнішніх факторів на точність прогнозів з різною глибиною. У процесі дослідження використовувалися дві сучасні моделі рекурентної нейронної мережі, LSTM і GRU, з різними часовими послідовностями. Бібл. 14, рис. 5, табл. 2. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |