ПІДВИЩЕННЯ ТОЧНОСТІ КОРОТКОСТРОКОВИХ ПРОГНОЗІВ ГЕНЕРАЦІЇ СЕС НА ОСНОВІ ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ ТА ВРАХУВАННЯ ДОДАТКОВИХ ФАКТОРІВ

Autor: В.О. Мирошник, С.С. Лоскутов
Jazyk: English<br />Ukrainian
Rok vydání: 2024
Předmět:
Zdroj: Технічна електродинаміка, Iss 1, Pp 061-061 (2024)
Druh dokumentu: article
ISSN: 1607-7970
2218-1903
DOI: 10.15407/techned2024.01.061
Popis: Статтю присвячено розвитку моделей прогнозування відпуску електроенергії промисловими сонячними електростанціями на основі штучних нейронних мереж та використання числового прогнозу погоди. Актуальність дослідження обумовлена необхідністю зменшення витрат, пов'язаних з небалансами виробників з відновлюваних джерел енергії (ВДЕ), які іноді сягають 50% відпущеної електроенергії, а також зростанням небалансів таких виробників в ОЕС України. Загальні небаланси виробників з ВДЕ сьогодні зумовлені падінням на 45% виробництва зеленої електроенергії, зокрема і внаслідок того, що у південних і південно-східних регіонах бойові дії пошкодили або знищили 75% вітрових електростанцій і 15 % сонячних станцій. Підвищення точності та стабільності прогнозування відпуску електроенергії такими виробниками можуть значно скоротити витрати на небаланси. Розроблено різні методи агрегації для 15-хвилинних значень вироблення зеленої енергії, щоб підвищити точність прогнозування для 1, 2 та 24-годинних інтервалів. Досліджено потенційні переваги використання значень числового прогнозу погоди (NWP) задля підвищення точності прогнозу. Проаналізовано вплив зовнішніх факторів на точність прогнозів з різною глибиною. У процесі дослідження використовувалися дві сучасні моделі рекурентної нейронної мережі, LSTM і GRU, з різними часовими послідовностями. Бібл. 14, рис. 5, табл. 2.
Databáze: Directory of Open Access Journals