Efficient Adsorption Capacity of MgFe-Layered Double Hydroxide Loaded on Pomelo Peel Biochar for Cd (II) from Aqueous Solutions: Adsorption Behaviour and Mechanism

Autor: Yongxiang Huang, Chongmin Liu, Litang Qin, Mingqi Xie, Zejing Xu, Youkuan Yu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Molecules, Vol 28, Iss 11, p 4538 (2023)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules28114538
Popis: A novel pomelo peel biochar/MgFe-layered double hydroxide composite (PPBC/MgFe-LDH) was synthesised using a facile coprecipitation approach and applied to remove cadmium ions (Cd (II)). The adsorption isotherm demonstrated that the Cd (II) adsorption by the PPBC/MgFe-LDH composite fit the Langmuir model well, and the adsorption behaviour was a monolayer chemisorption. The maximum adsorption capacity of Cd (II) was determined to be 448.961 (±12.3) mg·g−1 from the Langmuir model, which was close to the actual experimental adsorption capacity 448.302 (±1.41) mg·g−1. The results also demonstrated that the chemical adsorption controlled the rate of reaction in the Cd (II) adsorption process of PPBC/MgFe-LDH. Piecewise fitting of the intra-particle diffusion model revealed multi-linearity during the adsorption process. Through associative characterization analysis, the adsorption mechanism of Cd (II) of PPBC/MgFe-LDH involved (i) hydroxide formation or carbonate precipitation; (ii) an isomorphic substitution of Fe (III) by Cd (II); (iii) surface complexation of Cd (II) by functional groups (-OH); and (iv) electrostatic attraction. The PPBC/MgFe-LDH composite demonstrated great potential for removing Cd (II) from wastewater, with the advantages of facile synthesis and excellent adsorption capacity.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje