Autor: |
Jiafeng Zheng, Liping Liu, Keyun Zhu, Jingya Wu, Binyun Wang |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 9, Iss 9, p 964 (2017) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs9090964 |
Popis: |
In the summertime, convective cells occur frequently over the Tibetan Plateau (TP) because of the large dynamic and thermal effects of the landmass. Measurements of vertical air velocity in convective cloud are useful for advancing our understanding of the dynamic and microphysical mechanisms of clouds and can be used to improve the parameterization of current numerical models. This paper presents a technique for retrieving high-resolution vertical air velocities in convective clouds over the TP through the use of Doppler spectra from vertically pointing Ka-band cloud radar. The method was based on the development of a “small-particle-traced” idea and its associated data processing, and it used three modes of radar. Spectral broadening corrections, uncertainty estimations, and results merging were used to ensure accurate results. Qualitative analysis of two typical convective cases showed that the retrievals were reliable and agreed with the expected results inferred from other radar measurements. A quantitative retrieval of vertical air motion from a ground-based optical disdrometer was used to compare with the radar-derived result. This comparison illustrated that, while the data trends from the two methods of retrieval were in agreement while identifying the updrafts and downdrafts, the cloud radar had a much higher resolution and was able to reveal the small-scale variations in vertical air motion. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|