Lower Bound on the Number of Hamiltonian Cycles of Generalized Petersen Graphs
Autor: | Lu Weihua, Yang Chao, Ren Han |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Discussiones Mathematicae Graph Theory, Vol 40, Iss 1, Pp 297-305 (2020) |
Druh dokumentu: | article |
ISSN: | 2083-5892 |
DOI: | 10.7151/dmgt.2141 |
Popis: | In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P (N, k) and prove that Ψ(P(N,3))⩾N⋅αN,\Psi ( {P ( {N,3} )} ) \ge N \cdot {\alpha _N}, where Ψ(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and αN satisfies that for any ε > 0, there exists a positive integer M such that when N > M, ((1−ɛ)(1−r3)6r3+5r2+3)(1r)N+2 |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |