Insights into Image Understanding: Segmentation Methods for Object Recognition and Scene Classification
Autor: | Sarfaraz Ahmed Mohammed, Anca L. Ralescu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Algorithms, Vol 17, Iss 5, p 189 (2024) |
Druh dokumentu: | article |
ISSN: | 17050189 1999-4893 |
DOI: | 10.3390/a17050189 |
Popis: | Image understanding plays a pivotal role in various computer vision tasks, such as extraction of essential features from images, object detection, and segmentation. At a higher level of granularity, both semantic and instance segmentation are necessary for fully grasping a scene. In recent times, the concept of panoptic segmentation has emerged as a field of study that unifies semantic and instance segmentation. This article sheds light on the pivotal role of panoptic segmentation as a visualization tool for understanding scene components, including object detection, categorization, and precise localization of scene elements. Advancements in achieving panoptic segmentation and suggested improvements to the predicted outputs through a top-down approach are discussed. Furthermore, datasets relevant to both scene recognition and panoptic segmentation are explored to facilitate a comparative analysis. Finally, the article outlines certain promising directions in image recognition and analysis by underlining the ongoing evolution in image understanding methodologies. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |