Autor: |
Suresh Kumar Shanmugam, Ajithram Arivendan, Samy Govindan Selvamani, Thangaraju Dheivasigamani, Thirumalai Kumaran Sundaresan, Saood Ali |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Ceramics, Vol 6, Iss 4, Pp 1926-1936 (2023) |
Druh dokumentu: |
article |
ISSN: |
2571-6131 |
DOI: |
10.3390/ceramics6040119 |
Popis: |
The manufacturing of copper oxide (CuO) nanoparticles has been accomplished utilizing a green technique that relies on biologically reliable mechanisms. Aqueous solutions of copper nitrate and Ixora Coccinea leaf extract are used in an environmentally safe process for creating CuO nanoparticles. The characterization of the synthesized CuO nanoparticles involves the utilization of techniques such as X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetricanalysis (TGA). CuO nanoparticles are confirmed by XRD and FTIR peak results. When the particles are measured, they range between 93.75 nm and 98.16 nm, respectively. The produced CuO nanoparticles are used to prepare the nanofluid. While conventional water exhibits a 3 °C temperature difference, nanofluid achieves a considerable temperature differenceof 7 °C. As a result, it is clear that the nanofluid performs better at dispersing heat into the environment. The experiment’s overall findings support the possibility of ecologically friendly, green-synthesized CuO nanoparticle-induced nanofluid as an effective heattransfer fluid that can be applied to heattransfer systems. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|