Autor: |
Abdessamad Intidam, Hassan El Fadil, Halima Housny, Zakariae El Idrissi, Abdellah Lassioui, Soukaina Nady, Abdeslam Jabal Laafou |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Energies, Vol 16, Iss 11, p 4395 (2023) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en16114395 |
Popis: |
This paper compares the performance of different control techniques applied to a high-performance brushless DC (BLDC) motor. The first controller is a classical proportional integral (PI) controller. In contrast, the second one is based on adaptive neuro-fuzzy inference systems (proportional integral-adaptive neuro-fuzzy inference system (PI-ANFIS) and particle swarm optimization-proportional integral-adaptive neuro-fuzzy inference system (PSO-PI-ANFIS)). The control objective is to regulate the rotor speed to its desired reference value in the presence of load torque disturbance and parameter variations. The proposed controller uses a dSPACE platform (MicroLabBox controller board). The experimental prototype comprises a PEMFC system (the Nexa Ballard FC power generator: 1.2 kW, 52 A) and a brushless DC motor BLDC of 1 kW 1000 rpm. The PSO-PI-ANFIS controller presents better performance than the PI-ANFIS and classical PI controllers due to its ability to optimize the PI-ANFIS controller’s parameters using the particle swarm optimization (PSO) algorithm. This optimization results in improved tracking accuracy and reduced overshoot and settling time. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|