Autor: |
Petr Kratochvíl, Filip Průša, Hana Thürlová, Angelina Strakošová, Miroslav Karlík, Jaroslav Čech, Petr Haušild, Jiří Čapek, Ondřej Ekrt, Markéta Jarošová, Marek Vronka, Jozef Veselý, Peter Minárik, Ondřej Jankovský, Marcello Cabibbo |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Materials Research and Technology, Vol 30, Iss , Pp 4248-4260 (2024) |
Druh dokumentu: |
article |
ISSN: |
2238-7854 |
DOI: |
10.1016/j.jmrt.2024.04.090 |
Popis: |
Nearly equiatomic AlCoCrFeNi alloy samples were prepared by induction melting and mechanical alloying (MA) combined with spark plasma sintering (SPS). The cast sample showed a dendritic microstructure composed of spinodally decomposed nanometric constituents of the B2 and BCC phases. The spark plasma sintered sample exhibited an ultrafine-grained microstructure of B2 phase and FCC solid solution and Cr23C6 carbides. The MA + SPS sample was strengthened by compressive stress-strain test up to a yield strength of 2029 ± 5 MPa, resulting significantly higher compared to 1366 ± 32 MPa of the cast sample. In addition to the higher compressive yield strength, the sintered sample exhibited a hardness of more than 130 HV higher compared to the cast alloy. On the other hand, the cast alloy showed high plastic deformation (29%) and significantly high ultimate compressive strength of 3072 ± 122 MPa. Together with these mechanical characteristics, the MA + SPS sample showed good thermal stability while preserving the mechanical properties even after annealing at 800 °C. This was not the case with the cast sample, in which ductility and ultimate strength significantly decreased upon annealing at 800 °C. A substantial yield strength reduction of both MA + SPS and cast samples was recorded when tested at 800 °C. Nevertheless, stress-strain curve trends were observed to be quite different between the two samples, thus suggesting dissimilar deformation mechanisms under high-temperature compression. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|