Autor: |
Jun Hu, Ruifeng Li, Zhijia Hu, Haosen Li, Yaozhong Yang, Hongtao Li, Jialiang Lv, Qi Yu, Yunkun Zhao, Benli Yu, Liang Lu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
APL Photonics, Vol 9, Iss 3, Pp 036113-036113-7 (2024) |
Druh dokumentu: |
article |
ISSN: |
2378-0967 |
DOI: |
10.1063/5.0192626 |
Popis: |
This study first demonstrates that the random distributed feedback fiber laser (RDFL) can be implemented for sensing detection by using the self-mixing effect as a sensing mechanism. By constructing a compact self-mixing velocimeter based on Er-doped RDFL with the integration of a laser, sensing element, and transmission platform, we successfully measured the minimum detectable feedback intensity of 38.65 fW for the velocity signal, corresponding to 0.55 photons per Doppler cycle, exhibiting ultra-high sensitivity dynamics characteristics. In addition, the velocity measurement of a non-cooperative target at a single-channel distance of 100 km is accomplished because of the natural feature of long-distance transmission for the random distributed feedback fiber lasers, which greatly improves the ultra-long detection range in the field of self-mixing sensing. The proposed sensing scheme not only unveils a fresh perspective on the exploration of random fiber laser sensing but also showcases its diverse and wide-ranging applications within the realm of remote sensing measurements. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|