Autor: |
Hajo Bitter, Leonie Krause, Franziska Kirchen, Thomas Fundneider, Susanne Lackner |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Water Research X, Vol 17, Iss , Pp 100156- (2022) |
Druh dokumentu: |
article |
ISSN: |
2589-9147 |
DOI: |
10.1016/j.wroa.2022.100156 |
Popis: |
Microplastics (MPs) are ubiquitous in the environment and have been found in every environmental compartment. Wastewater and wastewater treatment plants (WWTPs) have been identified as possible point sources contributing to the emission of microplastic particles (MPP) into the aquatic environment. So far, MPP in wastewater effluents have mainly been analyzed by spectroscopic methods resulting in concentrations as number per volume. In this study, we present mass concentrations in the secondary effluents of four German municipal WWTPs, removal efficiencies of seven post-treatment systems and the resulting load emissions. Differential Scanning Calorimetry (DSC) was used for the analysis of semi-crystalline MPs. The concentrations of secondary effluents ranged from 0.1 to 19.6 µg L-1. Removal efficiencies > 94% were found for a microfiltration membrane (MF), two cloth types of a pile cloth media filter (PCMF), a micro strainer, a discontinuous downflow granulated activated carbon filter (GAC) and a powdered activated carbon (PAC) stage with clarifier and rapid sand filtration. A rapid sand filter (RSF) at WWTP B showed a removal efficiency of 82.38%. Only a continuous upflow GAC filter at WWTP C proved to be unsuitable for MP removal with an average removal efficiency of 1.9%. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|