Autor: |
Yingjie Fan, Xia Huang, Zhen Wang |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Fractal and Fractional, Vol 6, Iss 8, p 451 (2022) |
Druh dokumentu: |
article |
ISSN: |
2504-3110 |
DOI: |
10.3390/fractalfract6080451 |
Popis: |
This paper investigates the local stabilization problem of delayed fractional-order neural networks (FNNs) under the influence of actuator saturation. First, the sector condition and dead-zone nonlinear function are specially introduced to characterize the features of the saturation phenomenon. Then, based on the fractional-order Lyapunov method and the estimation technique of the Mittag–Leffler function, an LMIs-based criterion is derived to guarantee the local stability of closed-loop delayed FNNs subject to actuator saturation. Furthermore, two corresponding convex optimization schemes are proposed to minimize the actuator costs and expand the region of admissible initial values, respectively. At last, two simulation examples are developed to demonstrate the feasibility and effectiveness of the derived results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|