Enhancing flow stress predictions in CoCrFeNiV high entropy alloy with conventional and machine learning techniques

Autor: Sheetal Kumar Dewangan, Reliance Jain, Soumyabrata Bhattacharjee, Sandeep Jain, Manikant Paswan, Sumanta Samal, Byungmin Ahn
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Materials Research and Technology, Vol 30, Iss , Pp 2377-2387 (2024)
Druh dokumentu: article
ISSN: 2238-7854
DOI: 10.1016/j.jmrt.2024.03.164
Popis: A machine learning technique leveraging artificial intelligence (AI) has emerged as a promising tool for expediting the exploration and design of novel high entropy alloys (HEAs) while predicting their mechanical properties at both room and elevated temperatures. In this paper, we predict the flow stress of hot-compressed CoCrFeNiV HEAs using conventional (qualitative and quantitative models) and advanced machine learning approaches across various temperature and strain rate conditions. Conventional modeling methods, including the modified Johnson-Cook (JC), modified Zerilli–Armstrong (ZA), and Arrhenius-type constitutive equations, are employed. Simultaneously, machine learning models are utilized to forecast flow stress under different hot working conditions. The performance of both conventional and machine learning models is evaluated using metrics such as coefficient of determination (R2), mean abosolute error (MAE), and root mean squared error (RMSE). The analysis reveals that the gradient boosting machine learning model shows superior prediction accuracy (with value R2 = 0.994, MAE = 7.77%, and RMSE = 9.7%) compared to conventional models and other machine learning approaches.
Databáze: Directory of Open Access Journals