Generalized sigma model with dynamical antisymplectic potential and non-Abelian de Rham's differential
Autor: | Igor A. Batalin, Peter M. Lavrov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Physics Letters B, Vol 767, Iss C, Pp 99-102 (2017) |
Druh dokumentu: | article |
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2017.01.065 |
Popis: | For topological sigma models, we propose that their local Lagrangian density is allowed to depend non-linearly on the de Rham's “velocities” DZA. Then, by differentiating the Lagrangian density with respect to the latter de Rham's “velocities”, we define a “dynamical” anti-symplectic potential, in terms of which a “dynamical” anti-symplectic metric is defined, as well. We define the local and the functional antibracket via the dynamical anti-symplectic metric. Finally, we show that the generalized action of the sigma model satisfies the functional master equation, as required. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |