Generalized sigma model with dynamical antisymplectic potential and non-Abelian de Rham's differential

Autor: Igor A. Batalin, Peter M. Lavrov
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Physics Letters B, Vol 767, Iss C, Pp 99-102 (2017)
Druh dokumentu: article
ISSN: 0370-2693
1873-2445
DOI: 10.1016/j.physletb.2017.01.065
Popis: For topological sigma models, we propose that their local Lagrangian density is allowed to depend non-linearly on the de Rham's “velocities” DZA. Then, by differentiating the Lagrangian density with respect to the latter de Rham's “velocities”, we define a “dynamical” anti-symplectic potential, in terms of which a “dynamical” anti-symplectic metric is defined, as well. We define the local and the functional antibracket via the dynamical anti-symplectic metric. Finally, we show that the generalized action of the sigma model satisfies the functional master equation, as required.
Databáze: Directory of Open Access Journals