TR2RM: an urban road network generation model based on multisource big data

Autor: Xue Yang, Xiang Fan, Yichun Su, Qingfeng Guan, Luliang Tang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: International Journal of Digital Earth, Vol 17, Iss 1 (2024)
Druh dokumentu: article
ISSN: 17538947
1753-8955
1753-8947
DOI: 10.1080/17538947.2024.2344596
Popis: ABSTRACTRoad networks are an important part of transportation infrastructure through which people experience a city. The existing methods of vector map data generation mainly depend on a single data source, e.g. images, trajectories, or existing raster maps, which are limited by information fragmentation due to incomplete data. This study proposes an urban road network extraction framework named trajectory and remote-sensing image to RoadMap (TR2RM) based on deep learning technology by combining high-resolution remote sensing images with big trajectory data; this framework is composed of three components. The first component focuses on feature map generation by fusing remote sensing images with trajectories. The second component is composed of a novel neural network architecture denoted as AD-LinkNet, which is used to identify roads from the fused dataset of the first component. The last component is a postprocessing step that aims to generate the vector map accurately. Taking Rome, Beijing, and Wuhan as examples, we conduct extensive experiments to verify the effectiveness of the TR2RM. The results showed that the correctness of both the topology and geometry of the generated road network based on the TR2RM in Rome, Beijing, and Wuhan was 83.86% and 88.27%, 74.72% and 80.36%, and 73.83% and 77.7%, respectively.
Databáze: Directory of Open Access Journals