Construction and Validation of a Lung Cancer Risk Prediction Model for Non-Smokers in China

Autor: Lan-Wei Guo, Zhang-Yan Lyu, Qing-Cheng Meng, Li-Yang Zheng, Qiong Chen, Yin Liu, Hui-Fang Xu, Rui-Hua Kang, Lu-Yao Zhang, Xiao-Qin Cao, Shu-Zheng Liu, Xi-Bin Sun, Jian-Gong Zhang, Shao-Kai Zhang
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Oncology, Vol 11 (2022)
Druh dokumentu: article
ISSN: 2234-943X
DOI: 10.3389/fonc.2021.766939
Popis: BackgroundAbout 15% of lung cancers in men and 53% in women are not attributable to smoking worldwide. The aim was to develop and validate a simple and non-invasive model which could assess and stratify lung cancer risk in non-smokers in China.MethodsA large-sample size, population-based study was conducted under the framework of the Cancer Screening Program in Urban China (CanSPUC). Data on the lung cancer screening in Henan province, China, from October 2013 to October 2019 were used and randomly divided into the training and validation sets. Related risk factors were identified through multivariable Cox regression analysis, followed by establishment of risk prediction nomogram. Discrimination [area under the curve (AUC)] and calibration were further performed to assess the validation of risk prediction nomogram in the training set, and then validated by the validation set.ResultsA total of 214,764 eligible subjects were included, with a mean age of 55.19 years. Subjects were randomly divided into the training (107,382) and validation (107,382) sets. Elder age, being male, a low education level, family history of lung cancer, history of tuberculosis, and without a history of hyperlipidemia were the independent risk factors for lung cancer. Using these six variables, we plotted 1-year, 3-year, and 5-year lung cancer risk prediction nomogram. The AUC was 0.753, 0.752, and 0.755 for the 1-, 3- and 5-year lung cancer risk in the training set, respectively. In the validation set, the model showed a moderate predictive discrimination, with the AUC was 0.668, 0.678, and 0.685 for the 1-, 3- and 5-year lung cancer risk.ConclusionsWe developed and validated a simple and non-invasive lung cancer risk model in non-smokers. This model can be applied to identify and triage patients at high risk for developing lung cancers in non-smokers.
Databáze: Directory of Open Access Journals