Comparison of Risk Ratios of Shrinkage Estimators in High Dimensions

Autor: Abdenour Hamdaoui, Waleed Almutiry, Mekki Terbeche, Abdelkader Benkhaled
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematics, Vol 10, Iss 1, p 52 (2021)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10010052
Popis: In this paper, we analyze the risk ratios of several shrinkage estimators using a balanced loss function. The James–Stein estimator is one of a group of shrinkage estimators that has been proposed in the existing literature. For these estimators, sufficient criteria for minimaxity have been established, and the James–Stein estimator’s minimaxity has been derived. We demonstrate that the James–Stein estimator’s minimaxity is still valid even when the parameter space has infinite dimension. It is shown that the positive-part version of the James–Stein estimator is substantially superior to the James–Stein estimator, and we address the asymptotic behavior of their risk ratios to the maximum likelihood estimator (MLE) when the dimensions of the parameter space are infinite. Finally, a simulation study is carried out to verify the performance evaluation of the considered estimators.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje