Autor: |
Xiyue Cao, Yu-An Huang, Zhu-Hong You, Xuequn Shang, Lun Hu, Peng-Wei Hu, Zhi-An Huang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Genome Biology, Vol 25, Iss 1, Pp 1-29 (2024) |
Druh dokumentu: |
article |
ISSN: |
1474-760X |
DOI: |
10.1186/s13059-024-03357-w |
Popis: |
Abstract Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data space. We assume that such relationships can aid in characterizing cell type features and improving cell type recognition accuracy. To this end, we introduce scPriorGraph, a dual-channel graph neural network that integrates multi-level gene biosemantics. Experimental results demonstrate that scPriorGraph effectively aggregates feature values of similar cells using high-quality graphs, achieving state-of-the-art performance in cell type identification. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|